Dykstra's algorithm for constrained least-squares doubly symmetric matrix problems

نویسندگان

  • Jiao-Fen Li
  • Xi-Yan Hu
  • Lei Zhang
چکیده

In this work we apply Dykstra’s alternating projection algorithm for minimizing ‖AX − B‖ where ‖ · ‖ is the Frobenius norm and A ∈ Rm×n, B ∈ Rm×n and X ∈ Rn×n are doubly symmetric positive definite matrices with entries within prescribed intervals. We first solve the constrained least-squares matrix problem by using the special structure properties of doubly symmetric matrices, and then use the singular value decomposition to transform the original problem into a simpler one that fits nicely with the algorithm originally developed by [R. Escalante, M. Raydan, Dykstra’s algorithm for a constrained least-squares matrix problem, Numer. Linear Algebra Appl. 3 (1996) 459–471]. © 2010 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

An Iterative Method for the Symmetric Arrowhead Solution of Matrix Equation

In this paper, according to the classical algorithm LSQR for solving the least-squares problem, an iterative method is proposed for least-squares solution of constrained matrix equation. By using the Kronecker product, the matrix-form LSQR is presented to obtain the like-minimum norm and minimum norm solutions in a constrained matrix set for the symmetric arrowhead matrices. Finally, numerical ...

متن کامل

NEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS

We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...

متن کامل

Constrained Solutions of a System of Matrix Equations

We derive the necessary and sufficient conditions of and the expressions for the orthogonal solutions, the symmetric orthogonal solutions, and the skew-symmetric orthogonal solutions of the system of matrix equations AX B and XC D, respectively. When the matrix equations are not consistent, the least squares symmetric orthogonal solutions and the least squares skewsymmetric orthogonal solutions...

متن کامل

Exact and approximate solutions of fuzzy LR linear systems: New algorithms using a least squares model and the ABS approach

We present a methodology for characterization and an approach for computing the solutions of fuzzy linear systems with LR fuzzy variables. As solutions, notions of exact and approximate solutions are considered. We transform the fuzzy linear system into a corresponding linear crisp system and a constrained least squares problem. If the corresponding crisp system is incompatible, then the fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 411  شماره 

صفحات  -

تاریخ انتشار 2010